Wireless Technology Prospects and Policy Options (2011)
BOX 2.1
Analog Versus Digital Communications
In common usage, the term “analog” has come to mean simply “not digital,” as in “analog wristwatch” or “analog cable TV.” But for the purposes of this report it is useful to trace the meaning to its original technical usage, in early computing. From about 1945 to 1965, an era when digital computers were very slow and very costly, differential equations describing a hypothetical physical system were solved (one might say modeled) by an interconnected network of properly weighted passive components (resistors and capacitors) and small amplifiers, so that the smoothly time-varying voltages at various points in this network were precisely analogous to the time behavior of the corresponding variables (velocity, acceleration, flow, and so on) of the system being modeled. Today, we solve these same equations numerically on a digital computer, very quickly and at low cost.
In a similar way, for roughly 100 years, signals were transmitted in analog form (over wires or wirelessly) with a smoothly varying signal, representing the changing level and pitch of voice; the hue, saturation, and brightness of each point in a video image; and so forth. But just as high-speed and low-cost numerical representations and digital computations replaced analog computing, it likewise became much more reliable and less expensive to transmit digital coded numerical samples of a signal to be reconstituted at the receiver rather than to faithfully transmit a continuously varying analog representation. In digital communications, information is encoded into groups of ones and zeroes that represent time-sampled numerical values of the original (voice, music, video, and so on) signal.
Ironically, in the wireless domain, once the analog signal has been encoded into a sequence of digital values, smoothly varying forms for the ones and the zeroes must be generated so that the transmitted signal will propagate. Figure 2.1.1 shows a digital sequence of ones and zeros. The sharp on-off pulses that work so well inside a computer do not work well at all when sent through space between antennas. And so groups of ones and zeroes are represented by smooth changes in frequency, phase, or amplitude in a sinusoidal carrier, the perfect waveform of propagation. Three schemes are illustrated in Figures 2.1.2 through 2.1.4: amplitude shift keying of the carrier wave from 1 volt to 0 volts (Figure 2.1.2), frequency shift keying of the transmission frequency from f0 to f1 (Figure 2.1.3), and phase shift keying of the phase by 180 degrees (Figure 2.1.4). These ones and zeroes are interpreted at the receiver in groups of eight or more bits, representing the numerical value or other symbol transmitted.
-
-
-